
Syllabus: Object Oriented Programming

Department Math & CS Credits 3 Instructor Sang-Hyun Yoon Class Room 5708

Subject
MC3201: Class

3
Lab (e-mail) Attendee

OOP hrs/wk 5707 (oop.ksa@gmail.com)

1 Course Description

Course Objectives
On completion of this course, you’ll hopefully be able to:

• Use the Python programming language

– Programming is needed in all areas of science and engineering, although very
different languages are used.

• Think computationally

– Computational thinking influences how you go about solving a problem
– 50 years ago, the solution to a problem in mathematics or engineering was often a

formula. Today, it is usually an algorithm.

Contents

• Python programming language

– variables/expressions, dynamic typing
– conditionals, loops, functions
– lists, tuples, sets, dictionaries, strings
– high-order functions
– recursion
– user-defined objects, operator overloading
– encapsulation, inheritance
– memory model for objects

• Problem solving using Python

– simple robots
– scientific computation (e.g. Gaussian elimination, N-body simulation)
– image processing, recursive graphics
– recursive puzzles (e.g. N-Queen, Sudoku, minesweeper)
– winning strategy for simple combinatorial games (e.g. Tic-Tac-Toe)
– two-player games (e.g. othello)

1



Prerequisites

• Programming skill acquired through MC1201/1202

2 Text & References

Text: “The Practice of Computing using Python”, W. Punch, R. Richard

3 Grading

• Grading table

Activities Percentages
Midterm 20%

Final exam 40%
Presentation/Assignments 30%

Attitude/Attendance 10%

• Absolute evaluation

• Programming assignment for each class

• Miderm exam: practical test only (3 hrs)

• Final exam: written test (0.5 hrs) & practical test (3.5 hrs)

• Late-work policy: −30%/day

• Optional bonus problems

4 Students’ Presentations

• Each lecture consists of students’ presentation (in English).

– The primary goal of EC is to improve students’ English.

• Each student is expected to submit a preference list of lecture units.

• Matching will be established by a variant of stable matching algorithm.

• Make your own slides or use the provided slides as it is.

• Students’ lecture is evaluated by other students.

2



5 Lecture Schedule

0 Administrivia

• Course placement information
• Topics/Plan
• Tool installation

1. CS1/CS2 review

• Dynamic typing
• Variables/Expression
• Conditionals (if-else)
• Functions
• Loops (for, while, break/continue)
• Lists
• User-defined objects
• Problems: next permutation, square division, paper folding, pile of cubes, etc.

2. Recursion

• Inductive definition of functions
• Ex: Towers of Hanoi, binary search, exponentiation
• Winning strategy of combinatorial games
• Problems: powerset, permutation, counting, N-Queen, Sudoku, simplified Nim

game, cyclic coin game, etc.

3. High-order functions

• Operations as functions, types as sets, Functions as objects
• High-order functions in Python
• Anonymous functions (lambda)
• Scope of names (local vs. global)
• Default parameters, named parameters
• Variable-length arguments
• Problems: derivatives, integrate, curve length, surface area, Newton-Raphson method,

Euler’s method, etc.

4. Lists

• Creating lists (list comprehensions)
• range keyword
• Traversal
• Aliasing vs. copying
• Shallow vs. deep equality

3



• Slicing
• As parameters & return values
• Call-by-reference vs. call-by-value
• Built-in operations/functions for lists
• Sorting under user-defined order relations

5. Built-in data structures

• Tuples
– As immutable lists
– Creating tuples
– Tuple assignment (across functions, elements of for loops)
– Equality
– Built-in operations
– Multiple assignment (for loop, return value)
– Conversion between lists/tuples

• Sets
– Built-in methods/operations
– Immutability of elements in sets
– Deep equality
– Aliasing/copying
– for loops with sets
– Conversion between sets/lists/tuples

• Strings
– As unordered lists
– As tuples of characters
– Built-in methods
– Formatting for print

• Files
– Reading strings from a file
– Removing "\n" from input strings
– for loops with a file object
– Write strings to a file
– Built-in methods
– Another way to read from a file

• Dictionaries
– As a set of pairs of key/value
– Built-in operations/methods
– for loops with dictionaries
– Immutability of keys
– Deep equality
– Aliasing/copying
– Recursion with memoization (≡ dynamic programming)

6. User-defined objects I

• Constructors, self

4



• As parameters & return values
• Object methods as pure functions vs. modifiers
• Complicated types with objects
• Operator overloading & deep equality
• Overloadable built-in operators
• Reflected arithmetic operations, comparison operations, class as function
• More on Wing IDE (Debugging, Help system)
• Problems: overloadable operations for rational numbers, operations for matrices

over rational numbers

Midterm Exam

7. Memory layout for lists/objects

• Memory model for lists (of lists)
• Alias vs. shallow copy vs. deep copy of lists (of lists)
• Lists as function inputs (call-by-value vs. call-by-reference)
• Lists as function outputs (modifier vs. pure functions)
• Shallow vs. deep equality for lists (of lists)
• Memory model for user-defined objects
• Problems: Gaussian elimination, planar figures of Rubik’s cube

8. Image processing (cs1media)

• negative, lighter, black-and-white (graystone/real-bw)
• Mirror, (automatic) cropping, rotation, pixelizing vs. blurring
• Edge detection, merging, steganography
• Problems: sepia, reflection, blend, chromakey, posterize, printerize, flood fill

9. Graphics (cs1graphics)

• Canvas, drawable object
• Operations on drawable objects
• Layers, animation
• Recursive graphics: fractal

10. User-defined objects III

• Class variables/methods, static methods
• N-body simulation
• Problems: 2D elastic collision, overloadable operations for vectors, N-body moving

under gravitational force, Brownian motion

5



11. User-defined objects III

• Encapsulation, private variables/methods
• Inheritance, multiple inheritance, super
• Tic-Tac-Toe game
• Problems: inherited classes for line, ling segment, and half-lines, winning strategy

for Tic-Tac-Toe

12. Recursive puzzles

• N-Queen with graphics
• Sudoku with graphics

13. Recursive games

• Minesweeper
• Othello

Final Exam

6 Lecture Schedule (Tabular)

Lec # Topics Subtopics
1 CS1/CS2 review
2 Recursion combinatorial games
3 High-Order Functions scope, default param.
4 Lists sort
5 Built-In Data Structures set/dictionary/tuple/..
6 User-Defined Objects I debugger

Midterm Exam
7 Memory Layout for Objects gaussian elimination
8 Image Processing
9 Graphics
10 User-Defined Objects II N-body simulation
11 User-Defined Objects III tic-tac-toe
12 Recursive Puzzles N-queen, sudoku
13 Recursive Games minesweeper, othello

Final Exam

6



Lecture Units for Students’ Presentation

• score = max(20, ∑ credits× evaluation (from other students))

– If you selected two units with credits 12 and 15 and the evaluation points is 45/100
and 95/100, respectively, then the score is max(20, 12*0.45+15*0.95) = 19.65

• Each team consists of 1∼3 students.

Class No: Student ID: Name :

Class No: Student ID: Name :

Class No: Student ID: Name :

No. Topics Credits Preference
L1 CS1/CS2 Review N/A
L2 Recursion 18
L3 High-Order Functions 14
L4 Lists 13
L5 Built-In Data Structures 12
L6 User-Defined Objects I 10

Midterm Exam
L7 Memory Layout for Objects 18 TBD
L8 Image Processing 12 TBD
L9 Graphics 14 TBD
L10 User-Defined Objects II 10 TBD
L11 User-Defined Objects III 10 TBD
L12 Recursive Puzzles N/A
L13 Recursive Games N/A

• Matching will be established by a variant of stable matching algorithm.

• If some unit would not be selected by any students, it will be randomly assigned to a
student.

• Mark as many units as possible to avoid topic that you don’t want.

Example:
No. Topics Credits Preference

L2 Recursion 18 1
L3 High-Order Functions 14 4
L4 Lists 13 2
L5 Built-In Data Structures 12 5
L6 User-Defined Objects I 10 3

7


